MANUAL

PHILIPS

Cathode ray oscilloscope GM 5605

Contents

GENERAL

I. Introduction 7
II. Technical data 8
III. Accessories 10
DIRECTIONS FOR USE AND APPLICATIONS
I. Installation
A. Adjusting to the local voltage 11
B. Earthing 12 12
C. Checking before switching on 12
D. Switching on 13
II. Operation
A. Preliminary setting 14
B. Displaying waveforms
B. Displaying waveforms 15 15
C. How to use the X input 16
III. Applications
A. Measuring the amplitude 18
B. Using the X input 18
C. Displaying a diode characteristic 21 21
D. Displaying a hysteresis loop 21
SERVICE DATA
I. Circuit description 23
A. Y amplifier
25
B. Trigger pulse shaper 26
C. Time base generator
29
29
D. X amplifier
30
30
E. Cathode ray tube 31
F. Supply part
II. Gaining access to the parts
A. Removing the cabinet panels 33
B. Removing the knobs
34
34
C. Removing the front panel 34
D. Removing the window and the graticule 34
III. Maintenance
A. Wafer switches 36
B. Cabinet panels 36
IV. Adjusting elements and their functions 37
V. Checking and adjusting
A. Mains current 38
B. Supply voltage +280 V 38
C. Ripple on the supply voltage +280 V 38
D. Barrel and pincushion distortion 38
E. Focusing and astigmatism 39
F. Y amplifier 39
G. X amplifier 41
H. Time base generator 45
VI. Replacing parts
A. Thermal fuse 47
B. Supply transformer 47
C. Switches SK2, SK3 and SK4 47
D. Switch wafers SK2 48
E. Switch wafers SK3 48
F. Switch wafers SK4
48
48
G. Potentiometers on the front panel 48
H. CRT and valves 48
VII. Fault finding 54
VIII. List of parts
A. List of mechanical parts 55
B. List of electrical parts 58

List of figures

1 Adjusting to the local mains voltage 112
3 Preliminary setting 14The apparatus in tilted position12
4 Functions of the controls and sockets 17
5 Measuring the amplitude 18
6 Examples of Lissajous figures 19
7 Determining the phase angles sine $\varphi=\mathrm{a} / \mathrm{b}$ 19
8 Network for quadrant determination 20
9 Some particular phase angles 20
10 Displaying the diode characteristic of the OA 85 21
11 Displaying a hysteresis loop 22
12 Block diagram of the "bootstrap" integrator 26
13 Circuit diagram of the "bootstrap" integrator 27
14 Removing the cabinet panels 32
15
Removing the knobs 33
16 Removing the bottom plate and front panel 34
17 Removing the graticule 35
18 Square wave response of the Y amplifier 40
19
Square wave response of the X amplifier 43
20 Replacing the thermal fuse 47
21 Replacing the supply transformer 47
22 Anode connection 49
23 Positioning the c.r.t. 49
24
Right-hand side view with adjusting elements and units 50
25 Left-hand side view with adjusting elements and units 50
26
Front view with adjusting elements 51
27 Block diagram 61
28 Unit A; Y amplifier 65
29
Circuit diagram of the Y amplifier 67
30 Unit D; time base generator and trigger pulse shaper 71
31 Circuit diagram of the trigger pulse shaper 73
32
Unit C; X amplifier 79
33 Circuit diagram of the X amplifier 81
34 Unit B; beam control 85
35
Circuit diagram of the c.r.t. circuit 87
36 Unit E; H.T. unit 91
37
Unit F; supply part 92
38 Circuit diagram of the supply part 95

Important!

In correspondence concerning this apparatus please quote the type number and serial number as given on the plate at the back of the apparatus.

GENERAL PART

Introduction

The cathode ray oscilloscope GM 5605 has an extensive field of application and is particularly suitable for use in service workshops and for educational purposes. For X and Y deflection the apparatus contains d.c. amplifiers having the same properties (X-Y oscilloscope). The GM 5605 is, therefore, extremely suitable for displaying the relationship between two quantities, e.g. frequency and phase relationships. Moreover, voltages can be displayed as a function of time by means of the incorporated time-base generator.

Technical data

Properties expressed in numerical values for which a tolerance has been stated are guaranteed at nominal mains voltages on the voltage adapter. Numerical values without tolerances indicate the properties of the average instrument and are only given for the information of the user.

Cathode-ray tube circuit
Tube
a. type
b. effective screen area
c. total accelerating voltage

Graticule

Y amplifier
Type
Deflection sensitivity

Frequency response
Overshoot
Sweep expansion

DH7-78 flat screen (other screen types can be supplied)
$6 \times 5 \mathrm{~cm}$ (width \times height)
1750 V
10×8 div. $(1 \mathrm{div} .=5.5 \mathrm{~mm})$
d.c. amplifier
adjustable to 8 calibrated values: 0.01-0.03-$0.1-0.3-1-3-10-30 \mathrm{~V} / \mathrm{div}$.
Tolerance: $\pm 3 \%$
Between the steps, the sensitivity can be continuously adjusted in a ratio of $1: 3.5$ (uncalibrated). $0-200 \mathrm{kc} / \mathrm{s}$ (-3 dB). Via the capacitor input the bandwidth is: $5 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$.
1% for pulses with a rise time of $\geqslant 25 \mathrm{~ns}$
$3 \times$ the useful screen height, i.e. $1.5 \times$ upwards and downwards from the centre.
At maximum expansion the peaks of the signal can be displayed undistorted by means of the vertical shift control.
Input
a. input sockets
b. input resistance
c. input capacitance
d. maximum permissible input voltage at d.c. input

4-mm plug sockets
$500 \mathrm{k} \Omega$
45 pF in position " $0.01 \mathrm{~V} /$ div." of the attenuator switch
25 pF in the positions " 0.03 " and " $0.1 \mathrm{~V} /$ div." 55 pF in the other positions.
400 Vr.m.s. $^{\text {. }}$

300 V

50 ms
e. Maximum permissible d.c. voltage at the a.c. input
f. RC time of the capacitor input

X amplifier

Type
Deflection sensitivity

Response curve

Overshoot
Sweep expansion

Input
a. input sockets
b. input resistance
c. input capacitance
d. maximum permissible input voltage on d.c. input
e. Maximum permissible
d.c. voltage on the a.c. input
f. RC time of the capacitor input

Phase difference of the amplifiers

Phase difference

Time base generator

Sweep times
Mode of operation
d.c. amplifier
adjustable to 7 calibrated values: 0.03-0.1-0.3-1-3-10-30 V/div. Tolerance: $\pm 3 \%$ Between the steps, the sensitivity can be continuously adjusted in a ratio of $1: 3.5$ (uncalibrated). $0-200 \mathrm{kc} / \mathrm{s}(-3 \mathrm{~dB})$. Via the capacitor input the bandwidth is: $5 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$.
1% for pulses with a rise time $\geqslant 25 \mathrm{~ns}$.
$3 \times$ the useful screen width, i.e. $1.5 \times$ to the left and to the right from the centre.
At maximum expansion the peaks of the signal can be displayed undistorted by means of the horizontal shift control.

4-mm plug sockets
$500 \mathrm{k} \Omega$
45 pF in position " $0.03 \mathrm{~V} / \mathrm{div}$ " of the attenuator switch
25 pF in the position " $0.1 \mathrm{~V} /$ div."
55 pF in the other positions.
$400 \mathrm{~V}_{\mathrm{r} . \mathrm{m} . \mathrm{s} .}$

300 V

50 ms
$\leqslant 5^{\circ}$ for frequencies of $0-200 \mathrm{kc} / \mathrm{s}$, provided that the two continuous attenuator controls are adjusted to " $\times 1$ ".
adjustable in 12 steps from $20 \mu \mathrm{~s} /$ div. to 100 $\mathrm{ms} / \mathrm{div}$. at a time base length of 10 divisions. triggered

Triggering

a. required picture height for internal triggering
b. required voltage for external triggering
c. input impedance of socket "EXT.TRIGG."

Supply

Mains voltage
internal or external
0.5 division for frequencies of $5 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$.
$0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ for frequencies of $5 \mathrm{c} / \mathrm{s}-200 \mathrm{kc} / \mathrm{s}$.
The maximum voltage amounts to $10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ (in view of crosstalk).
$1 \mathrm{M} \Omega / / 20 \mathrm{pF}$
voltage adapter for $110-125-145-200-220$ and 245 V . The mains frequency may range from $40-100 \mathrm{c} / \mathrm{s}$ (mains frequencies $<50 \mathrm{c} / \mathrm{s}$ only at nominal mains voltage). Power consumption is 80 W .
The Y and X deflection sensitivity changes inversely proportional to the mains voltage.
height 25 cm
width 16 cm
depth 35 cm
10 kg

1 mains flex
1 manual
2 test cables

DIRECTIONS FOR USE AND APPLICATIONS

Installation

A. ADJUSTING TO THE LOCAL MAINS VOLTAGE

The apparatus can be adjusted to mains voltages of 110-125-145-200-220 and 245 V by means of a voltage adapter.
The adjusted value can be read through the round opening in the rear panel. The instrument is adjusted to another mains voltage as follows.

- Remove the cover plate at the rear (Fig. 1).
- Pull the adapter out a little, turn it until the correct voltage value is uppermost and then press the adapter back again.
-- Refit the cover plate.

B. EARTHING

Earth the instrument in accordance with the local safety regulations. This may be done

- via the mains flex, if the apparatus has a 3-core mains flex provided with a plug with rim-earthing contacts, or
- via one of the earthing sockets (" \because ") at the front of the apparatus.

Double earthing connections may cause hum and must be avoided.

C. CHECKING BEFORE SWITCHING ON

- Check the setting of the mains voltage adapter (see section A).
- Check whether the apparatus has been properly earthed (see section B).
- Set knob "INTENS." to position " 0 ".
- Connect the apparatus to the mains via the mains flex.

Fig. 2. If desired the apparatus can be tilted by means of the stand provided on the bottom

D. SWITCHING ON

Switch on the apparatus by setting knob "INTENS." from position " 0 " to approximately its central position.

A stationary picture of maximum brightness, left on the screen for too long a time may permanently damage the screen.

A. PRELIMINARY SETTING

- Set all knobs to the positions indicated in Fig. 3.
- Adjust the time base line to the centre of the screen by means ol the knobs " $\downarrow \mathrm{Y} \uparrow$ " and " $<-\mathrm{X} \rightarrow$ ".
- Check whether the time base line appears horizontally on the screen. If necessary, reposition the picture tube in accordance with section VI.H.1.
- Adjust the definition and the brightness of the picture by means of the controls "FOCUS." and "INTENS.".

Fig. 3. Preliminary setting

Notes

- If the time base line cannot be displayed by means of knobs " $\leftarrow \mathbf{X} \rightarrow$ " and " $\uparrow \mathrm{Y} \downarrow$ ", potentiometer "DC-Balance" of the Y amplifier (accessible on the left-hand side of the apparatus) must be turned until the time base line appears. This potentiometer must be adjusted in such a way, that the picture does not shift if the continuous control "Y AMPL." is turned (see section V.F.1).
- If knob "X AMPL." is in position "0.3 V/div.", knob "DC-Balance" of the X amplifier (accessible on the right-hand side of the apparatus) must be adjusted in such a way, that the light spot on the screen no longer shifts if the continuous control is turned (see section V.G. 1). With cathode ray tubes, astigmatism may arise. Then the light spot on the screen is not round. This can be corrected by means of potentiometer "ASTIGM.", accessible on the left-hand side of the apparatus.

B. DISPLAYING WAVEFORMS

1. Time base internally triggered

- Adjust as described under "Preliminary setting" (page 14).
- Turn knob "STAB." anti-clockwise, until the time base line just disappears.
- Apply a voltage to the d.c. or a.c. input of the Y amplifier.
- Turn knob "STAB." until a stable picture is obtained.
- Place knobs "Y AMPL." and " N." in the required position.

Note: If no triggering occurs at minimum setting (0.5 div .), potentiometer "LEVEL" (R513, in the right-hand side wall) must be adjusted according to section V.H.I.

2. Time base externally triggered

- Adjust as described under "Preliminary setting" (page 14).
- Turn knob "STAB." anti-clockwise until the time base line just disappears.
- Apply a voltage to the d.c. or a.c. input of the Y amplifier.
- Apply an external trigger voltage to socket "EXT.TRIGG." on the right-hand side of the apparatus (if the picture must be stationary, this voltage must be derived from the voltage from which the Y signal also originates).
- Place knobs "Y AMPL." and " M " at the required position.

C. HOW TO USE THE X INPUT

If a voltage is applied to both amplifiers, these voltages can be compared with each other and their relationships can be made visible.
Some of these applications are also mentioned in chapter III.

- Connect the voltages to be compared to the input sockets "DC (AC) Y AMPL." and "DC (AC) X AMPL.".
- Place switches "Y AMPL." and "X AMPL." in the desired position.
- Set the continuous control "X AMPL" to position " $\times I$ ".

The picture can now be brought on the screen by means of the shift controls " $\downarrow \mathrm{Y} \uparrow$ " and " $<\mathrm{X} \rightarrow$ ".
In order to obtain good stationary pictures, the voltages on the two amplifier inputs should be synchronous.

Fig. 4. Functions of the controls and sockets

Applications

A. MEASURING THE AMPLITUDE

- Measure the distance between the peaks, c.g. 3 div. (see Fig. 5).
- Determine the position of knob "Y AMPI.." (continuous attenuator in position " $\times 1$ "), c.g. $10 \mathrm{~V} /$ div.
Now the amplitude amounts to 10 (attenuator position) $\times 3$ (picture height) $=30 \mathrm{~V}$.

Fig. 5. Measuring the amplitude

B. USING THE X INPUT

The following examples can be mentioned:
Frequency measurements
Phase measurements
Displaying characteristics
Etc.
Frequency measurement by means of Lissajous figures
If a voltage of unknown frequency is applied 10 the Y amplifier, the light spot on the screen will describe a so-called Lissajous figure, under the influence of a voltage of known frequency applied to the X amplifier. Dependent on the frequency the image will show a certain number of peaks. The unknown frequency
$\mathrm{f}_{\mathrm{x}}=\frac{\text { number of peaks at the top }}{\text { number of peaks at the side }} \times$ known frequency.
Some common Lissajous figures are shown in Fig. 6, in which $50 \mathrm{c} / \mathrm{s}$ is used as reference frequency.

Fig. 6. Examples of Lissajous figures

Phase measurements

Phase angles can be measured by means of a Lissajous figure (ellipse)
The image must then lie symmetrically round the centre.
The following applies irrespective of the quadrant in which the phase angle is found: the sine of phase angle φ is determined by the ratio a / b (see Fig. 7).
In the figure, sine $\varphi=2 \mathrm{div} . / 4 \mathrm{div} .=0.5$. The phase angle φ is then 30°. If the top of the ellipse is at the right of the screen, the phase angle is in the first quadrant $\left(30^{\circ}\right)$ or in the fourth quadrant $\left(360^{\circ}-30^{\circ}=330^{\circ}\right)$.

Fig. 7. Determining the phase angles sine $\varphi=a / b$

If the top is at the left of the screen, the angle is in the second quadrant $\left(180^{\circ}-30^{\circ}=150^{\circ}\right)$ or in the third quadrant $\left(180+30^{\circ}=210^{\circ}\right)$. For determination of the quadrant proceed as follows:

- Include a circuit as shown in Fig. 8 into the lead to the X amplifier with closed switch.
- Open the switch and turn the potentiometer from minimum to maximum value. In doing so, the shape of the ellipse must clearly change.

Fig. 8. Network for quadrant determination

Phase angle (thus also a) Quadrant Quadrant
becomes

larger	2. $\left(90^{\circ}-180^{\circ}\right)$	1. $\left(0^{\circ}-90^{\circ}\right)$
smaller	3. $\left(180^{\circ}-270^{\circ}\right)$	4. $\left(270^{\circ}-360^{\circ}\right)$

If the picture appears as a straight diagonal on the screen, the phase angle is $0^{\circ}\left(360^{\circ}\right)$ or 180° (Fig. 9).

Fig. 9. Some particular phase angles

C. DISPLAYING A DIODE CHARACTERISTIC

In displaying a diode characteristic the current through the diode is plotted as a function of the voltage across the diode. For this, use can be made of the circuit shown in Fig. 10. Voltage source E supplies a low sinewave voltage. The resistance R must be small with respect to the expected internal resistance of the diode. The voltage across R, which is directly proportional to the anode current, is fed to the Y amplifier. The anode voltage is applied to the X amplifier. Now a curve is displayed which represents the relationship between anode current and anode voltage.

Fig. 10. Displaying the diode characteristic of the OA 85

D. DISPLAYING A HYSTERESIS LOOP

In displaying hysteresis loops of magnetic material, the magnetic induction B is plotted as a function of the field strength H . If the iron core of a coil contains no air gaps, the field strength is proportional to the current through the number of windings. The primary current is thus a measure of the field strength H . A resistor Rp is connected in series with the primary winding. The voltage across this resistor is applied to the X input (see Fig. 12).
The voltage across the secondary winding is $U s=k \cdot d B / d t$.
Here k is a constant.
This voltage is integrated by an RC network ($R \gg 1 / \omega \mathrm{c}$). The voltage across the capacitor then becomes $U c=k \cdot B / R . C$. The induction B is thus proportional to the voltage across the capacitor. This voltage, which is low and must be adequately amplified, is fed to the Y amplifier.

Fig. 11. Displaying a hysteresis loop

Note - It is possible that the trace is displayed as a mirror image with respect to the Y axis. The peak of the hysteresis loop is brought to the right of the sercen by reversing the connections of one of the coil windings.

SERVICE DATA

Circuit diagram

A. Y AMPLIFIER (unit A, Fig. 29)

The amplifier for the Y deflection is a d.c. coupled push-pull amplifier. The voltage under test is connected to socket BU2 (DC) or to socket BU3 (AC) and subsequently applied to the output amplifier via an attenuator circuit and a phase inverter.

1. Attenuator circuit

An attenuator circuit, which is operated by means of SK3, is included in the input circuit of the Y amplifier.
In the positions " $3 \mathrm{~V} / \mathrm{div}$." and " $10 \mathrm{~V} / \mathrm{div}$." ofSK3, the signal to be measured is attenuated by the voltage dividers R34-R26//R41 and R35-R27//R41 A step attenuator with high impedance (R36-R28 ... R32) is included in the other positions of SK3. The attenuator switch has eight calibrated positions. By means of the trimmers C27, C28 and C29 and the capacitors C30, C31, C32 and C33, the attenuators are adjusted in such a way that in all positions of SK3 the attenuation is frequency independent.

2. Phase inverter stage

Via the attenuator circuit the signal to be measured is applied to the phase inverter stage with the valves B1 and B2. This stage is driven on the control grid of valve B1. Valves B1 and B2 are coupled via the common cathode resistor R40. As the control grid of B 2 is connected to earth via R42, this valve is driven by a voltage whose magnitude is equal to the signal to be measured, but opposed in phase to the latter. The voltage on the anodes of B1 and B2 are symmetrical with respect to the average d.c. voltage difference between these anodes.
The amplitude of the signal can be adjusted continuously by varying the value of the anode resistors R43 and R49 - and thus the amplification by means of potentiometer R6.
Turning potentiometer R6 would also result in a variation of the average d.c. voltage on the input of the next amplifier stage ($\mathrm{BI}^{\prime}-\mathrm{B} 2^{\prime}$), which would
give rise to a shift of the light spot on the screen. This is avoided by equalizing the values of the d.c. voltages on the anodes of Bl^{\prime} and B 2 ' by means of potentiometer R57 (DC-Balance), so that no d.c. voltage arises across R6.
Resistor R37 in the control grid circuit of valve B1 serves to limit the grid current in the case of positive input signals. The adverse influence of this resistor on the square wave response is eliminated by parallel capacitor C34.

3. Output stage

Output amplifier $\mathrm{B} 3-\mathrm{B} 3^{\prime}$ is preceded by the cathode followers $\mathrm{B} 1^{\prime}$ and B2', which are provided to reduce the influence of the high input capacitance of the output valves on the anode impedance of the valves Bl and B 2 . As a result the bandwidth of the amplifier is larger than if the valves B 1 and B 3 or B 2 and $\mathrm{B} 3^{\prime}$ were directly coupled to the preceding stage. The shift controls R4-R4' are included in the control grid circuit of the cathode followers. By means of these potentiometers the d.c. voltage on the control grids of $\mathrm{B} 1^{\prime}$ and $\mathrm{B} 2^{\prime}$ can be varied. The variation on the grid of Bl^{\prime} opposite to that on the grid of B^{\prime}. As a result the image will shift in the vertical direction across the screen. The shift voltage is applied to the control grids of $\mathrm{B} 1^{\prime}$ and $\mathrm{B} 2^{\prime}$ via the voltage dividers with high impedance $\mathrm{R} 76-\mathrm{R} 64$ and $\mathrm{R} 72-\mathrm{R} 70$ respectively. By means of these voltage dividers the anode potentials of valves $B 1$ and $B 2$ are made independent of the position of the shift controls (R4, R4'), so that the d.c. balance is maintained. Capacitors C36 and C37 prevent the voltage dividers from affecting the square wave response. By means of potentiometer R80 the feedback of both output valves is adjusted in such a way that the maximum Y sensitivity is $10 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}} / \mathrm{div}$.
The symmetry of the signal in the output stage is increased due to the common cathode resistor. The anodes of B3 and B3' are directly connected to the Y deflection plates. For driving the time base generator in the case of internal triggering use is made of that part of the anode voltage of B3, which is applied to the first valve (B501) of the trigger pulse shaper via switch SK5.

B. TRIGGER PULSE SHAPER (unit D, Fig. 31)

The trigger pulse shaper consists of an amplifier stage (B501) and a Schmitt trigger (B502-B502').
The trigger signal, which may originate from the Y amplifier (R85) as well as from an external voltage source, is applied to the control grid of
valve B501 via C501. The anode of this amplifier valve is d.c. coupled to the input of the Schmitt trigger (B502-B502'). A Schmitt trigger is a multivibrator with two stable conditions, viz.
B502 conductive, B502' cut off, and
B502 cut off, B502' conductive.
The condition is changed by applying a positive pulse to the control grid of the non-conductive valve or a negative pulse to the grid of the conductive valve. By means of R513 the Schmitt trigger B502-B502' is adjusted in such a way that in the waiting position (i.e. if no trigger voltage is applied) valve B502 is cut off and B502' conductive. During the positivegoing part of the cycle the amplified trigger signal applied to the control grid of B502 will drive the valve into conduction at a certain level (the upper threshold voltage). Due to the common cathode resistor and the d.c. coupling between the anode of valve B502 and the control grid of valve B502' a cumulative switching phenomenon takes place, as a result of which valve B502' is cut-off. This results in a positive voltage at the anode of B502'.

During the negative half of the cycle of the amplified trigger signal, valve B502 will be cut-off at a certain level (lower "threshold voltage"). Due to the repetitive switching action, valve B502' becomes conductive, so that a negative voltage arises at the anode of this valve. In the case of a repetitive trigger signal it is necessary for the correct functioning of the trigger pulse shaper that both threshold voltages are exceeded. The trigger sensitivity of the trigger pulse shaper is thus determined by the difference in level between the two threshold voltages. This difference is adjusted by means of potentiometer R513, so that the position of this potentiometer is decisive for the trigger sensitivity.
The positive and negative voltage transients at the anode of valve B502' are differentiated by capacitor C503 and resistor R521 into small positive and negative pulses, which are applied to the Schmitt trigger B503B503' in the time base generator.
The control range of R 3 is adjusted by selection of resistor R 522 . The capacitors C502 and C517 in the anode leads of valves B502 and B501 respectively serve to improve the rise time of the pulse shaped voltages.

C. TIME BASE GENERATOR (unit D, Fig. 31)

1. Principle

The sawtooth voltage is obtained by means of a Schmitt trigger and a "bootstrap" integrator. The working of the Schmitt trigger is the same as that of the trigger described in chapter B "Trigger pulse shaper". By means of potentiometer R3 ("STAB.") the multivibrator is adjusted in such a way that it can operate both free running and triggered. R3, however, must be so adjusted that valve B503' is cut-off and B503 conductive (in that case no time-base line is visible on the screen). In this condition, the control grid potential of B503 is equal to the cathode potential of this valve, because the control grid is connected to the positive supply voltage via R530-R531 and GR503. The working principle of the "bootstrap" integrator is shown in the figure below.

This circuit ensures that the charging current of capacitor C remains constant, independent of the charge of capacitor C, so that the charge curve is of good linearity.
A voltage variation across capacitor C is applied to resistor R via an amplifier with an amplification factor $A \approx 1$ and battery E.
The voltage across resistor R - and thus the charging current through the capacitor -- therefore remains constant, which results in a linear charge curve of the capacitor.

2. Working

The circuit employed in the GM 5605 is shown in Fig. 13.
If no trigger signal is applied, the potential on the control grid of valve B501' is determined by the cathode voltage of valve B503. The voltage across the time base capacitor (C505... C516) is then almost equal to this cathode voltage, which amounts to approximately 100 V .
As soon as a trigger voltage is applied, valve B503 is made non-conductive by the positive trigger pulses at the cathode of B503. Owing to the repetitive switching action, the condition of the multivibrator changes into B503' conductive and B503 cut-off. Now the potential of the control grid of B501' is undefinite, but in principle will tend to rise to the anode potential of valve B501'. However, the time base capacitor does not allow a sudden voltage rise, but will be charged in accordance with an e-power curve. Owing to the charging, the control grid potential of valse

B501' will rise a little, as a result of which the cathode potential rises to the same extent. This voltage rise is applied to the cathode of diode GR503 via capacitor C518, so that the diode is cut-off. The voltage across resistor R531 + R533 thus remains constant.
If the voltage across the time base capacitor rises further, the process described will be continued. The time base capacitor is thus charged by
a constant current supplied by capacitor C518, as a result of which the voltage across this capacitor increases linearly (this is the forward sweep of the sawtooth voltage). As soon as the amplitude of the sawtooth voltage has reached a given value, valve B503 becomes conductive. As a result the Schmitt trigger B503-B503' switches over to the condition B503 conductive - B503' cut-off. The voltage on the control grid of B503 then drops to the cathode voltage of valve B503. The resultant grid current of valve B503 causes the control grid voltage of valve B501' to drop likewise. This voltage drop is applied to the cathode of diode GR503 via valve B501' connected as a cathode follower and capacitor C518. This diode becomes again conductive and the potential of the junction R531-C518 is again determined exclusively by the potential of the anode of valve $\mathrm{B} 501^{\prime}$. In this period the time base capacitor discharges across R530, across the diode formed by the control grid and the cathode of valve B503 and across resistor R521 until the voltage across the capacitor is equal to the cathode voltage of B503 (this is the flyback of the sawtooth voltage). At the end of the flyback C518 is charged again via diode GR503 and the low output impedance of cathode follower B501'. This condition, the waiting period, is maintained until multivibrator B503B503' is again changed over by a trigger pulse.

3. Linearity of the sawtooth voltage

The sawtooth voltage has a good linearity due to the good transmission of the cathode follower, the large capacitance of capacitor C518 and the use of diode GR503.

4. Sweep time

The slope of the sawtooth voltage - and thus the sweep time per divisiondepends upon both the value of the time base capacitor and the charging current. The sweep time can thus be varied by changing the value of the time base capacitor. The time base capacitors are selected with SK2, by means of which twelve sweep times can be adjusted. By means of R533 the charging current is adjusted in such a way that the sweep times per unit of length comply with the orientation values on the text plate to within 25%.

5. Sawtooth voltage

The sawtooth voltage is available across resistor R733 (Fig. 33). The amplitude of the voltage applied to the X amplifier is determined by the value of R733.
D. X AMPLIFIER (unit C, Fig. 33)

Except for the input circuit and the anode circuit of valve B703 the X amplifier is equal to the Y amplifier.

1. Input circuit

As desired, either an external voltage or the sawtooth voltage can be applied to the X amplifier. In the first position of SK4 the sawtooth voltage is taken from resistor R733 and applied to the input of the amplifier. An external deflection voltage can be applied directly (via socket BU4) or via an isolating capacitor (via socket BUS).
The position of the time base line on the screen is determined by the potential on the control grid of valve B702. This potential can be adjusted by means of potentiometer R746. In the other positions of SK4 the control grid is connected to earth via R746 and at the same time the screen grid voltages of the valves B501 and B503 are switched off. As a result the time base generator no longer starts, so that there is no risk of crosstalk in the X amplifier.
The attenuator circuit, which is operated with switch SK4, is built up in the same way as the circuit of the Y amplifier. The only difference is that the step attenuator has only four possibilities of attenuation, so that the deflection sensitivity of the X amplifier can be adjusted to seven values. By means of trimmers C727, C728 and C729 and capacitors C733, C730, C731 and C732 the attenuators are adjusted in such a way that in all positions of SK4 the attenuation is frequency independent.

2. Amplifier stages

The amplifier stages are practically identical to those of the Y amplifier. The difference is that the anode resistor of B703 is not divided into two halves, as the anode resistor of B3. The anode potentials of valves B701 and B702 are equalized by means of R757 (DC-Balance), so that the image does not shift in the horizontal direction if continuous attenuator R7 is turned. With the double potentiometer R5-R5' the image can be shifted horizontally across the screen. By means of R780 the sensitivity of the amplifier is adjusted to $30 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}} /$ div.
The anodes of the valves B703 and B703' are directly coupled to the X deflection plates.

E. CATHODE RAY TUBE CIRCUIT (unit B, Fig. 35)

1. Intensity and brightness control

The brightness of the picture can be changed by varying the potential on the Wehnelt cyclinder by means of R1.
A pulse-shaped voltage, which is applied to the Wehnelt cylinder via capacitor C519, is taken from the anode of B503. This pulse-shaped voltage is high during the forward sweep of the sawtooth voltage and low during the flyback. As a result the electron beam is suppressed during the flyback of the sawtooth voltage, because the positive peak of the pulseshaped voltage is retained by diode GR301 almost on the level adjusted with R1. Capacitor C301 serves to prevent crosstalk of the brightness pulse on the negative supply voltage and to smooth the ripple of the negative supply part.

2. Focusing and astigmatism

The line on the screen can be adjusted sharply by means of potentiometer R2. This potentiometer regulates the voltage on the focusing anode g3 of valve B301. Astigmatism of the electrostatic lens can be corrected by adjusting the voltage on the last acceleration anode (g4) to the correct value by means of potentiometer R305.

3. Barrel and pincushion distortion

This is due to faults (for instance fringe areas) in the electrostatic lens and can be corrected by adjusting the voltage at the beginning of the postaccelerating coil to a certain value by means of potentiometer R309.

F. SUPPLY PART (unit E, F, Fig. 38)

The supply part delivers voltages of $+280 \mathrm{~V},+160 \mathrm{~V},-150 \mathrm{~V}$ and +1610 V .
The voltage of +280 V is electronically regulated and stabilised.

1. +280 V

The Graetz circuit GR 1001 . . GR 1004 supplies a full-wave rectified voltage, which is applied to the control circuit.
This control circuit consists of a series regulator (B 1001), control valve (B1001') and a stabiliser (B1002). The latter keeps the cathode of B1001' at a constant potential of 85 V . A load variation or mains voltage variation in the $+280-\mathrm{V}$ supply circuit will result in a change of the $+280-\mathrm{V}$
voltage. This voltage variation is passed to the control grid of valve B1001 via the voltage divider R1009//R1012-R1011. The voltage applied to the control grid is considerably amplified owing to the large anode resistor (R1005).
From the anode of valve BI001' the amplified signal, which is opposed in phase to the original voltage variation, is applied to the control grid of series regulator B1001. As a result this valve, dependent upon a positive or negative voltage variation of the $+280-\mathrm{V}$ voltage, will carry less or more current, so that the original voltage variation is compensated for. The ripple voltage on the $+280-\mathrm{V}$ voltage is also fed back. The feedback factor for the ripple voltage is, however, much greater than that for the d.c. voltage, due to the use of capacitor C1003 in parallel with R1009.

The current which must be supplied by the $+280-\mathrm{V}$ supply part is larger than that supplied by the series regulator. Resistor R1003 is, therefore, connected in parallel with B1001.
Voltage divider R1003-R1004 is provided for hum compensation.
2. +160 V

This voltage is derived from the $+280-\mathrm{V}$ supply voltage by means of voltage divider R1019-R1020.
3. -150 V

This is the full-wave rectified and smoothed a.c. voltage supplied by winding S3 of the supply transformer.
The voltage of -150 V is among others applied to the Wehnelt cylinder of the cathode ray tube via R1.
The brightness of the picture can thus be adjusted by means of potentiometer R1.
4. +1610 V

The a.c. voltage taken from winding S7 of the supply transformer is halfwave rectified by means of valve B1003. The rectified voltage is applied to the post-acceleration anode of the cathode ray tube.

5. Heater voltage

The heater voltages for the various valves are derived from windings S 4 , S5, S6 and S8.
The windings S 5 and S 6 are brought at a d.c. voltage potential.
This prevents breakdown in case the maximum permissible voltage difference between heater and cathode is exceeded.

Gaining acces to the parts

A. REMOVING THE CABINET PANELS

The cabinet consists of a number of separate panels, which may be removed individually.

Rear panel

This may be removed after the two screws " A " on the rear panel have been loosened a few turns (Fig. 14).

Top panel

After the rear panel has been detached, the top panel may be removed by loosening the two screws "B" a few turns (Fig. 14).

Fig. 14. Removing the cabinet panels

Side panels

After the rear panel has been detached, the side panels may be removed by sliding them slightly backwards and subsequently lifting them sideways out of the frame.

Bottom panel

After detaching the rear panel, the bottom panel may be removed by unscrewing the four screws "C" (Fig. 16).

B. REMOVING THE KNOBS (Fig. 15)

Single knobs

- Remove cap "A".
- Loosen nut "B". The knob may now be slid off the spindle.

Double knobs

- Remove cap "A".
- Loosen nut "B". Now the smallest knob can be slid off the spindle.
- Loosen nut "C". Now the large knob can be slid off the spindle.

Fig. 15. Removing the knobs

C. REMOVING THE FRONT PANEL

- Remove the cabinet panels according to section II.A.
- Remove the knobs according to section II.B.
- Unsolder the connecting wires of sockets BUl and BU6.
- Unscrew the rings of sockets BU2 . . BU5.
- Remove the 10 screws "S" (Fig. 16).
- Remove the front panel (consisting of front frame and text plate).

Fig. 16. Removing the bottom plate and front panel

D. REMOVING THE WINDOW AND THE GRATICULE

- Turn the window approximately 15° anticlockwise and remove it from the front panel (Fig. 17).
Now the graticule can be pushed out of the window.
- The window can be adjusted horizontally by moving the stop bracket at the rear of the front panel. Before moving the bracket, first loosen the two fixing screws a little.

GM 5605 nervily
 Gaining access to the parts

Fig. 17. Removing the graticule

Maintenance

A. WAFER SWITCHES

If these switches no longer function properly due to soiling, they can be lubricated with switch oil (see "List of mechanical parts", page 56). This oil has both cleaning and lubricating properties. After lubrication, the switch must be rotated a few times through all positions.

B. CABINET PANELS

If the PVC-coated cabinet panels have become dirty they can, after removal, be washed with water and soap (Chapter II.A); if necessary, use some scouring powder.

Adjusting elements and their functions

The sequence below is arbitrary. For complete adjustment it is advisable to adhere to the sequence given in Chapter V.

Adjustment	Adjusting element	Measuring instrument	Recommen PHILIPS apparatus	Chapt. section
Barrel or pincushion distortion	R309	L.F. generator	GM 2317	D
Astigmatism	R305	L.F. generator	GM 2317	E
Control range R2	R304	L.F. generator	GM 2317	E
Y amplifier				
- Zero setting	R57	None		F1
- Sensitivity	R80	L.F. generator	GM 2317	F2
- Square wave response SK3	$\begin{aligned} & \mathrm{C} 27, \mathrm{C} 28, \\ & \mathrm{C} 29 \end{aligned}$	Square wave voltage generator	GM 2324	F4
X amplifier				
- Zero setting	R757	None		G1
- Sensitivity	R780	L.F. generator	GM 2317	G2
- Length of time base line	$\begin{aligned} & \text { R733, } \\ & \text { R746 } \end{aligned}$	None		G3
- Square wave response SK4	$\begin{aligned} & \mathrm{C} 727, \\ & \mathrm{C} 728, \\ & \mathrm{C} 729 \end{aligned}$	Square wave voltage generator	GM 2324	G5
- Phase characteristic	C39	L.F. generator	ZV 2312	G10
Time base generator				
-- Internal triggering	R513	L.F. generator	ZV 2312	H1
- Stability	R522			G3
- Sweep times	R533			H4

Supply

- Ripple voltage on $+280 ~ V$	R1004	L.F. a.c. voltmeter	GM 6012	C
$-+280-$ V voltage	R1011	d.c. voltmeter	GM 6058	B

Checking and adjusting

The tolerances given below are factory tolerances, which apply only if the apparatus is readjusted. They may deviate from the tolerances mentioned in the technical data (General part, chapter II).

A survey of the adjusting elements and their functions is given on page 37.

A. MAINS CURRENT

At $220 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$ the current taken from the mains must not exceed 420 mA .

B. SUPPLY VOLTAGE +280 V

Check whether the supply voltage on the cathode of valve B1001 is between 278 V and 282 V . If necessary, select another value for R1011.

C. RIPPLE ON THE SUPPLY VOLTAGE +280 V

Check whether the ripple voltage on the cathode of valve B1001 does not excced 10 mV . If necessary, select another value for R1004.

D. BARREL AND PINCUSHION DISTORTION

- Apply a sinusoidal voltage of $50 \mathrm{c} / \mathrm{s}$ to BU3.
- Also apply a sinusoidal voltage to BU5, however, of a frequency of $10 \mathrm{kc} / \mathrm{s}$.
- Adjust the amplitudes of both voltages in such a way that a uniformly lit square of 7.5×7.5 divisions is obtained.
- Reduce a possible barrel or pincushion distortion to minimum by means of R309. When adjusted correctly, no point of the sides of the square must fall within a concentric square of 7×7 divisions.
-- Display a line on the screen which makes an angle of 30° with the Y axis. (Two voltages of equal phase, frequency $1 \mathrm{kc} / \mathrm{s}$, on BU3 and BU5).
- Check that this line is straight.

If necessary, adjust R309 in such a way that both requirements are met as far as possible.

E. FOCUSING AND ASTIGMATISM

- Display a circle of a diameter of 4 cm on the screen (apply (wn simusoidal voltages with a phase difference of 90° to the X and Y infull).
- Set R305 in such a way that the picture can be adjusiced sharply by means of R2, both at high and low brightness.
- If necessary, select another value for R304.

F. Y AMPLIFIER

1. Zero setting

- Set SK3 to position "30 V/div.".
- Set SK4 to position " N.".
- Turn R3 clockwise.
- Adjust the time base line to the centre of the scrien by mbillis of R4.
- Adjust R57 in such a way that the line does not move. il R6, is lurned (with shorted input).

2. Sensitivity

- Set SK3 to position ". $01 \mathrm{~V} / \mathrm{div}$.".
- Turn R6 clockwise, R7 anti-clockwise and R513 clockwise.
- Set SK8 to position " M '.
- Adjust R3 in such a way that the time base generator just culs curt.
- Apply to BU2, a voltage of $80 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$, frequency $2 \mathrm{kc} / \mathrm{s}$.
- Adjust R513 in such a way that a triggered image appears.
- Adjust R80 in such a way that the picture height is 8 divisions.

3. Y shift

- Apply a sinusoidal voltage (frequency $2 \mathrm{kc} / \mathrm{s}$) to BU2 of such a value that the picture height is 3 divisions (the voltage must be symmetrical with respect to earth).
- Increase the input voltage by a factor 8.
- Both with R4 fully anti-clockwise and fully clockwise it must be possible to display the peaks of the sinewaves undistorted within the praticule. If necessary, replace valves B1 and B2 and repeat the adjustiment from item Fl onwards.

4. Step attenuator

Check the attenuation with SK3 in the following positions (R6 fully clockwise):
$\left.\begin{array}{crr}\hline \text { Position SK3 } & \text { Voltage on BU2 } & \text { Picture height } \\ \hline .01 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 28.25 \mathrm{mV}_{\text {r.m.s. }} \\ .03 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 84.75 \mathrm{mV}_{\text {r.m.s. }} \\ .1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 0.2825 & \mathrm{~V}_{\text {r.m.s. }} \\ .3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 0.8475 & \mathrm{~V}_{\text {r.m.s. }} \\ 1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 2.825 & \mathrm{~V}_{\text {r.m.s. }} \\ 3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 8.475 & \mathrm{~V}_{\text {r.m.s. }} \\ 10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 28.25 & \mathrm{~V}_{\text {r.m.s. }} \\ 30 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 84.75 & \mathrm{~V}_{\text {r.m.s. }}\end{array}\right\}$

5. Continuous attenuator

- Turn R6 fully clockwise.
- Apply a sinusoidal voltage to BU2 of a frequency of $2 \mathrm{kc} / \mathrm{s}$ and an amplitude such that the picture height amounts to 3.5 divisions.
- Turn R6 fully anti-clockwise.

The picture height must now lie between 0.7 and 1 division.

6. Square wave response

- Turn R6 clockwise.
- Set SK 3 to position ". $01 \mathrm{~V} /$ div."
- Apply a square wave voltage of a frequency of $2 \mathrm{kc} / \mathrm{s}$ to BU2. The picture height must amount to approximately 8 divisions.
- Compare the square wave response with Fig. 18.

E 112
Fig. 18. Square wave response of the Y amplifier

7. Square wave response of step attenuator

- Turn R6 fully clockwise.
- Connect a square wave voltage of a frequency of $2 \mathrm{kc} / \mathrm{s}$ to BU2.
- Adjust the square wave response according to the table below:

Position SK3	Adjust with
$.03 \mathrm{~V} / \mathrm{div}$	C27 (see Fig. 18)
$.1 \mathrm{~V} / \mathrm{div}$	C28 (see Fig. 18)
$.3 \mathrm{~V} / \mathrm{div}$	C 29 (see Fig. 18)

Check the other positions.

8. Amplitude/frequency characteristic

- Turn R6 fully clockwise.
- Set SK3 to position ". $01 \mathrm{~V} / \mathrm{div}^{\prime}$ ".
- To BU2 apply a sinewave voltage of a frequency of $2 \mathrm{kc} / \mathrm{s}$ and an amplitude such that the picture height is 8 divisions. If the sensitivity is adjusted correctly (see item 2), the voltage on BU2 must amount to approximately $28.3 \mathrm{mV}_{\text {r.m.s. }}$
- Increase the frequency of the voltage on BU2 to $200 \mathrm{kc} / \mathrm{s}$, but keep the amplitude constant. Now the picture height must be at least 6 divisions.
- Check whether a d.c. voltage connected to BU3 is blocked by the builtin isolating capacitor C26.

9. Hum in the Y amplifier

The hum in the Y amplifier must not exceed 0.2 divisions with SK3 in position ". $01 \mathrm{~V} / \mathrm{div}$.".

G. X AMPLIFIER

1. Zero setting

- Set SK4 to position " $30 \mathrm{~V} /$ div.".
- Adjust the spot to the centre of the screen by means of R5.
- Adjust R757 in such a way that the spot does not move if R7 is turned (with shorted input).

2. Sensitivity

- Set SK4 to position ". $03 \mathrm{~V} / \mathrm{div}$.".
- Turn R7 clockwise.
- To BU5 apply a signal of $300 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ of a frequency of $1 \mathrm{kc} / \mathrm{s}$.
- Adjust R780 in such a way that the horizontal deflection covers 10 divisions.

3. Length of the time base line

- Set SK4 to position " N ". No input voltage on the input sockets.
- Turn R7 fully anti-clockwise.
- By means of R5 adjust the spot to the centre of the screen.
- Set SK2 to position " $2 \mathrm{msec} / \mathrm{div}$ ".
- With R3 set at 45° from the left-hand stop, adjust the time base generator to free-run by means of R522 (in doing so, the apparatus must be at operating temperature).
- Adjust R746 in such a way that the time base line is symmetrical with respect to the centre of the screen.
- Select such a value for R733 that the length of the time base line lies between 11 and 13 divisions in all positions of SK2.
- If necessary, readjust R746.

4. X shift

- Apply a sawtooth voltage to BU3.
- To BU5 apply a sinusoidal voltage of a frequency of $2 \mathrm{kc} / \mathrm{s}$ and an amplitude such that the picture height is 3 divisions (the voltage must be symmetrical with respect to earth).
- Increase the amplitude of the input signal by a factor 10 .
- Both with R5 fully anti-clockwise and fully clockwise it must be possible to display the peaks of the sinewaves undistorted within the graticule.

If necessary, valves B701 and B702 may be replaced and the adjustment repeated from item El onwards.

5. Step attenuator

Check the attenuation with SK4 in the following positions (R7 fully clockwise):
$\left.\begin{array}{lll}\hline \text { Position SK4 } & \text { Voltage on BU4 } & \text { Picture width } \\ \hline .03 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 84.75 \mathrm{mV}_{\text {r.m.s. }} \\ .1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \text { /div. } & 0.2825 \mathrm{~V}_{\text {r.m.s. }} \\ .3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 0.8475 \mathrm{~V}_{\text {r.m.s. }} \\ 1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 2.825 \mathrm{~V}_{\text {r.m.s. }} \\ 3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 8.475 \mathrm{~V}_{\text {r.m.s. }} \\ 10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 28.26 \mathrm{~V}_{\text {r.m.s. }} \\ 30 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} / \text { div. } & 84.75 \mathrm{~V}_{\text {r.m.s. }}\end{array}\right\}$

6. Continuous attenuator

- Turn R7 fully clockwise.
- To BU4 apply a sinewave voltage of a frequency of $2 \mathrm{kc} / \mathrm{s}$ and an amplitude such that the picture height is 3.5 divisions.
- Turn R7 fully anti-clockwise.
- Now the picture width must be between 0.7 and 1 division.

7. Square wave response

- Turn SK4 and R7 fully clockwise.
- Apply a square wave voltage to BU4 of a frequency of $2 \mathrm{kc} / \mathrm{s}$. The picture width must be approximately 8 divisions.
- The square wave response must at least be in accordance with Fig. 19.

E 113

Fig. 19. Square wave response of the X amplifier

8. Square wave response of step attenuator

- Turn R7 fully clockwise.
- To BU4 connect a square wave voltage of a frequency of $2 \mathrm{kc} / \mathrm{s}$.
- Adjust the square wave response according to the table below.

Position SK4 Adjust with
$0.1 \mathrm{~V} /$ div. $\quad \mathrm{C} 727$ (Fig. 19)
0.3 V/div. C728 (Fig. 19)

1 V/div. C729 (Fig. 19)
Check the other positions.

9. Frequency response curve

- Turn SK4 and R7 fully clockwise.
- Set SK3 to position " $30 \mathrm{mV} /$ div.".
- To BU4 connect a sinewave of a frequency of $2 \mathrm{kc} / \mathrm{s}$ and an amplitude such that the picture width is exactly 8 divisions. If the X sensitivity (see point E.2) is correctly adjusted, the voltage on BU4 must amount to about 85 mV .
- Increase the frequency of the voltage on BU4 to $200 \mathrm{kc} / \mathrm{s}$, but keep the amplitude constant. Now the picture width must be at least 6 divisions.

10. Phase characteristic

- Set SK3 and SK4 to position ". 03 V/div.".
- Turn R6 and R7 clockwise.
- Apply a sinusoidal voltage to BU2 and BU4 of a frequency of $5 \mathrm{c} / \mathrm{s}$. Both voltages must have the same phase and the same amplitude. Both voltages must have the same phase and the same amplitude. Now an ellipse arises on the screen. In the way described in Chapter "Phase measurements", determine the angle φ which the ellipse makes with the X axis. The deviation from 35° must not exceed 5°.
- Repeat this measurement at frequencies of $100 \mathrm{kc} / \mathrm{s}$ and $200 \mathrm{kc} / \mathrm{s}$. Tolerance 5°.

11. Hum in the X amplifier

With SK4 in position ". $03 \mathrm{~V} /$ div" the hum in the X amplifier must not exceed 0.1 division.

12. Crosstalk

- Set SK3 to position "0.1 V/div".
- Turn R6 and R7 clockwise.
- Set SK4 to position ". $03 \mathrm{~V} / \mathrm{div}$ ".
- Short-circuit BU4 with respect to earth.
- Apply a pulse-shaped voltage of $100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ to BU 2 , with a repetition frequency of $200 \mathrm{kc} / \mathrm{s}$. The X deflection must not exceed 0.2 division.

H. TIME BASE GENERATOR

1. Internal triggering

- Turn R513 clockwise and R7 anti-clockwise.
- Set SK4 to position "M".
- Adjust R3 so that the time base generator has just cut out.
- Apply to BU2 a sinusoidal voltage of a frequency of $1 \mathrm{kc} / \mathrm{s}$ and an amplitude such that the picture height is 0.5 division.
- Adjust R513 in such a way that a triggered picture appears on the screen.
- Change the frequency of the input voltage successively from $5 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$. With a correct adjustment of R3, the picture must be stationary at these frequencies, even if R7 is turned clockwise.

2. External triggering

- To BU7 apply a voltage of $0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ which derived from the same voltage source as the voltage applied to BU2.
- With a correct adjustment of R3, the time base generator must start smoothly and the picture must be stationary at frequencies of $5 \mathrm{c} / \mathrm{s}$ and $200 \mathrm{kc} / \mathrm{s}$.

3. Linearity of the time base

- Set SK2 to position ". $02 \mathrm{~ms} /$ div.".
- Apply a sinusoidal voltage to BU2, with a frequency of $50 \mathrm{kc} / \mathrm{s}$ and with such an amplitude that the picture height amounts to 8 divisions.
- Display a number of periods on the screen and by means of R7 adjust the second period from the left to a width of 2 divisions. The second period from the right may be max. 0.5 divisions wider or narrower than 2 divisions.

4. Time base sweep times

Set SK2 to position ". 02 ms/div.".

- Apply a square wave voltage to BU2, with a frequency such that a complete period is traced on each division of the graticule. The picture height must be 8 divisions.
- Now the value of the frequency of the square wave voltage must lie between 37.5 and $62.5 \mathrm{kc} / \mathrm{s}$. If required, correct the sweep time by selecting another value for R533.
- Check all positions of SK2 (sce table below).

Position SK2	Frequency square wave voltage
$.05 \mathrm{~ms} / \mathrm{div}$.	$15,000-25,000 \mathrm{c} / \mathrm{s}$
$1 \mathrm{~ms} / \mathrm{div}$.	$7,500-12,500 \mathrm{c} / \mathrm{s}$
$.2 \mathrm{~ms} / \mathrm{div}$.	$3,750-6,250 \mathrm{c} / \mathrm{s}$
$.5 \mathrm{~ms} / \mathrm{div}$.	$1,500-2,500 \mathrm{c} / \mathrm{s}$
$1 \mathrm{~ms} / \mathrm{div}$.	$750-1,250 \mathrm{c} / \mathrm{s}$
$2 \mathrm{~ms} / \mathrm{div}$.	$375-625 \mathrm{c} / \mathrm{s}$
$5 \mathrm{~ms} /$ div.	$150-250 \mathrm{c} / \mathrm{s}$
$10 \mathrm{~ms} / \mathrm{div}$.	$75-125 \mathrm{c} / \mathrm{s}$
$20 \mathrm{~ms} /$ div.	$37.5-62.5 \mathrm{c} / \mathrm{s}$
$50 \mathrm{~ms} / \mathrm{div}$.	$15-25 \mathrm{c} / \mathrm{s}$

Replacing parts

A. THERMAL FUSE

The supply transformer is protected by a thermal fuse which blows if the temperature of the supply transformer exceeds 125°. Before replacing the blown fuse, the cause must be traced first. The new fuse must be fixed to the spring " S " and then be pulled onto the hook " H " (see Fig. 20; to this end remove the rear panel and the left-hand side panel in accordance with the instructions given in section II.A).

B. SUPPLY TRANSFORMER

- Remove the cabinet panels in accordance with the instructions given in section II.A.
- Remove the seven screws " A " (see Fig. 16). Now the rear mounting plate can be pulled a little from the frame.
- Unsolder all connections of the transformer.
- Remove the four bolts and nuts"B" (Fig. 21).
- Now the transformer can be removed from the apparatus at the lefthand side.

C. SWITCHES SK2, SK3, AND SK4

- Remove the front panel according to section II.C.
- Loosen the two screws by means of which the switch is fitted to the foremost mounting plate.

Fig. 20. Replacing the thermal fuse

Fig. 21. Replacing the supply transformer

- Unsolder the connecting wires of the switch.
- Remove the switch from the foremost mounting plate.

D. SWITCH WAFERS SK2

- Remove the cabinet panels according to section II.A.
-- Remove the four fixing screws from the two metal mounting strips.
- Unsolder the connections of the wafer to be replaced and slide it from the switch.

E. SWITCH WAFERS SK3

-- Remove switch SK3 according to section VI.C.

- Remove the six fixing screws from the two metal mounting strips.
- Remove the mounting strips and the trimmer holder.

Now the switch wafers can be easily removed.

F. SWITCH WAFERS SK4

- Remove switch SK4 according to section VI.C.
- Remove the six fixing screws from the two metal mounting strips.
- Remove the mounting strips and the trimmer holder.
- Remove potentiometer R7 together with its fixing bracket.

Now the switch wafers can be easily removed.

G. POTENTIOMETERS ON THE FRONT PANEL

- Remove the front panel according to section II.C.
- Unsolder the connections from the appropriate potentiometer.
- Remove the fixing nut from the potentiometer.
- Remove the potentiometer from the foremost mounting plate.

H. CRT AND VALVES

1. Cathode ray tube

- Remove the cabinet panels according to section II.A.
- Remove the window together with the graticule according to section II.D.
- Remove anode connection "A" (Fig. 22) at the top of the cathode ray tube.

Fig. 22. Anode connection

Fig. 23. Postioning the a.r.t

- Remose the tube holder (for connection see page 877 .
- Hold the tube at the front and then pull it from the protective housing and rubber cap. When the tube is imerted it is recommended to prinkle at little talcum powder oser the lower pate of the tube so that at slide more casly into the rubher cap. See to it hat the protective cianng is mot damaged (dents etc.).
 lime base line tums exactly hormontally. It ibs is not the case. He thbe can be correctly positioned by means of lexer "H. 1 Fig. 23: \|f necesars. first loosen the screws " k " it little).
Subsequently the quality of the pecture the detectorn semsitanty and the sweep time of the time base must be checked and acadusted. If neces waty (sections V.B, V.C, V.D.2. V.E. 2 and V.F.4.

2. Valves, diodes and other components

All component parts have heen taken from normal production stoch. After replacement of valves or other component parts it may be necessary to readjust the appropriate part of the circuit. (See chapter V, "Checking and adjusting").
New valves can be aged by allowing the apparatus to be switched on for 100 hours. Aging can also take place outside the apparatus. The valves are then connected as diodes (in the case of pentodes connect the grids and in the case of triodes the grid to the anode). The anode voltage is so chosen that the quiescent current at normal heater boltage is $1 / 6$ th of the mavimum permissible cathode current.

Fig. 24. Right-hand side view adjusting elements and units

Fig. 25. Left-hand side view with adjusting elements and units

Fig. 26. Front view with adjusting elements

The quiescent current for the various valves is as follows:
B1, B2, B501, B502, B503, B701, B702: ECF 804 mA (triode and pentode in parallel)

B3, B703
ECC 853 mA (both triodes in parallel)

B1003
$5642 \quad 0.5 \mathrm{~mA}$
ECL 827 mA (triode and pentode in parallel)

Fault finding

The arrangement of the component parts is shown in Figs. $28 \ldots 38$. To enable faults to be traced quickly, the principal voltages and waveforms are shown in the drawings of the printed wiring boards and in the circuit diagrams. To enable faults to be remedied quickly, one should be familiar with the working of the apparatus and the instructions relating to its adjustment (chapters I and V). If necessary, you can always apply to the PHILIPS Service Organisation.
si-53 blanko

List of parts

A. LIST OF MECHANICAL PARTS

Item	Num-Code number ber		Description	Minimum slock				
				Number of apparatus				
				S	1	3	5	10
1	1	M7 07617	Handle	**	-	-	-	1
2	2	E2 74267	Bracket	**	-	-	-	2
3	1	M7 19301	Text plate	**	-	-	-	2
4	7	M7773 53	Knob $14 \mathrm{~mm} ø$ for spindle 6 mm ø	*	-	1	2	3
5	5	B1 89149	Knob with arrow for spindle 14 mm ø	**	-	1	2	3
6	3	973/52	Knob 22 mm ø	*	-	-	1	2
7	1	973/D51	Cap for knob 22 mm ø	**	-	-	-	1
8	3	973/P55	Arrow for knob $22 \mathrm{~mm} \varnothing$	**	-	-	1	2
9	1	M7 35027	Window	*	-	-	-	2
10	1	M7 74907	Graticule	*	-	-	-	1
11	1	M7 13486	Contrast-enhancing plate	**	-	-	-	1
12	4	P7 65514	Foot	**	-	-	2	4
13	2	973/58	Knob 14 mm ø for spindle 4 mm ø	*	-	--	1	2
14	4	979/11	Socket	*	-	1	1	1
15	4	M7 08086	Nut	**	-		1	2
16	1	M7 73711	Mains voltage adapter	*	-	-	-	1
17	1	0829050	Mains connection	*	-	-	-	1
18	2	M760389	Earth terminal	*	1	1	3	5
19	1	M7 75178	Switch socket	*	2	1	2	3
20	1	P4 65588	Box	**	-	-	2	4
21	1	M7 28949	Anode contact cap	*	-	-	1	2
22	1	40467	Valve holder (B 301)	*	-	-	-	2
23	8	$976 /$ PW 9×12	Valve holder noval	*	1	3	5	8
24	1	$976 /$ PW 7×12	Valve holder min.		-	-	1	2
25	4	$910 / 18 \times 110$	Strip 110 mm	**	-	-	-	2

Number	Code number	Description	Minimum stock				
			Number of apparatus				
			S	1	3	5	10
100	A3 32036	Soldering eyelet	**	10	10	15	25
2	$978 / 4 \times 65$	Coaxial plug	*	1	1	2	2
2	M7 34018	Plug pin	*	-	1	1	2
2	978/1 $\times 4 \mathrm{AP}$	Plug	*	1	2	2	3
1 m	R $209 \mathrm{KA} / 11 \mathrm{BBO}$	H.F. cable		2	2	3	4
2	P5 657 09/159 AA	Trimmer holder	*	-	-	1	2
10 cc	971/71	Switch oil	*	-	-	-	10 cc
1	0829049	Female plug	*	-	-	1	3

Purpose of the column S

Components not marked
These should be present at the Service Department in the country concerned or at the customer's who is using the apparatus.
They include:
a. nearly all electrical components;
b. mechanical parts which are vulnerable, or which are subject to wear.

Components marked with one star

These components generally have a long or unlimited service-life, but their presence is essential for the correct working of the apparatus. Stocking up of a few of these components depends on the following factors.
a. the number of apparatus present in the country concerned;
b. the necessity of having the apparatus working continuously or not;
c. the time of delivery of the components with respect to the import restrictions in the country concerned and the duration of the transport.

Components marked with two stars

These components have a long or unlimited service-life and they are not essential for the correct working of the apparatus. Generally there is not a local stock.

B. LIST OF ELECTRICAL PARTS ELEKTRISCHE EINZELTEILE

ELEKTRISCHE ONDERDELEN NOMENCLATURE ELECTRIQUE

- The indication "PW" means, that the component concerned is a of type for mounting on a printed-wiring plate.
- Die Angabe „PW" bedeutet, dass der diesbezügliche Teil speziell für Montage auf Leiterplatten bestimmt ist.
- De aanduiding „PW" betekent, dat het desbetreffende onderdeel speciaal voor montage op gedrukte bedradingsplaten is bestemd.
- L'indication "PW" indique, que cette pièce est du type pour montage sur une plaque de câblage imprimé.
- The correct values of selected resistors and capacitors have been fixed when adjusting the instrument in the factory.
- Die richtigen Werte der Abgleichwiderständen und -Kapazitäten sind bei der Einstellung in der Fabrik festgelegt.
- De juiste waarden van de keuzeweerstanden en -condensatoren zijn bij het afregelen in de fabriek bepaald.
- Les valeurs exactes des résistances et des capacités d'ajustage sont choisies lors de la fabrication de l'appareil.
- All resistors are vaporized carbon resistors, unless otherwise stated.
- Sofern nicht anders angegeben, handelt es sich hierbei um Kohlewiderstände.
- Alle weerstanden zijn opgedampte koolweerstanden, tenzij anders aangegeven.
- Toutes les résistances sont du type au carbone vaporisé, sauf indication différente.

Für die englische Wörter lese man in deutsch, holländisch oder französisch:
Voor de Engelse tekst kan men in het Duits, Nederlands of Frans lezen: Pour le texte anglais on lit en allemand, hollandais ou en français:

Service part	Bestellnummer	Bestelnummer	Numéro de code
Value	Wert	Waarde	Valeur
Tolerance	Fehlergrenzen	Tolerantie	Tolérance
Power	Leistung	Vermogen	Wattage
Voltage	Spannung	Spanning	Tension
Description	Beschreibung	Omschrijving	Désignation
Potentiometer (potm) linear	Pot. linear	Lincaire koolpot.	Potentiométre au carbon linéair Wire-wound
Drahtwiderstand		Draadgewonden	Bobineé
2 in parallel	2 parallel	2 parallel	2 en parallèle
Choice resistor	Abgleichwiderstand	Keuzeweerstand	Résistance d'ajustage

Capacitors-Kondensatoren-Condensatoren-Condensateurs

No.	Service part	Value	Voliage V	Tolerance $\%$	Description
C26	$906 / \mathrm{V} 100 \mathrm{~K}$	$0.1 \mathrm{\mu F}$	700	10	Paper
C27	C 004 FA/20E	20 pF			Trimmer
C28	$908 / \mathrm{P} 10 \mathrm{E}$	10 pF			Trimmer
C29	C $004 \mathrm{FA} / 20 \mathrm{E}$	20 pF			Trimmer
C30	$904 / 22 \mathrm{E}$	22 pF	500	10	Ceramic
C31	$904 / 1 \mathrm{~K}$	1000 pF	500	$-20 /+50$	Ceramic
C32	$904 / 10 \mathrm{E}$	10 pF	500	$\pm 3 \mathrm{pF}$	Ceramic
C33	$904 / 56 \mathrm{E}$	56 pF	500	10	Ceramic
C34	$906 / 22 \mathrm{~K}$	22000 pF	400	10	Polyester
C35	$904 / 2 \mathrm{~K} 2$	2200 pF	500	$-20 /+50$	Ceramic
C36	$904 / 270 \mathrm{E}$	270 pF	500	10	Ceramic
C37	$904 / 270 \mathrm{E}$	270 pF	500	10	Ceramic
C38	$904 / 680 \mathrm{E}$	680 pF	500	$-20 /+50$	Ceramic
C39	$904 / 8 \mathrm{E} 2$	8.2 pF	500	$\pm \frac{1}{2} \mathrm{pF}$	Ceramic

Resistors-Widerstände-Weerstanden-Résistances

No.	Service part	Value	Power W	Tolerance $\%$	Description
R4	E 091 CG/00B12	$500 \mathrm{k} \Omega$			Potm. tandem lin.
R6	$916 / \mathrm{GL} 200 \mathrm{~K}$	$200 \mathrm{k} \Omega$			Potm. log.
R25	$901 / 1 \mathrm{M}$	$1 \mathrm{M} \Omega$	0.25	1	1
R26	$901 / 200 \mathrm{~K}$	$0.2 \mathrm{M} \Omega$	0.25	1	
R27	B8 305 23D/52K6	52600Ω	0.25	1	
R28	$901 / 12 \mathrm{~K}$	$12 \mathrm{k} \Omega$	0.1	1	
R29	B8 305 25D/3K33	3330Ω	1	1	
R30	B8 305 25D/1K16	1160Ω	0.1	1	
R31	B8 305 25D/333E	333Ω	0.1	1	
R32	B8 305 25D/167E	167Ω	0.1	1	
R34	B8 305 26D/333K	$333 \mathrm{k} \Omega$	0.25	1	
R35	B8 305 17D/450K	$450 \mathrm{k} \Omega$	0.25	1	
R36	B8 305 26D $/ 483 \mathrm{~K}$	$483 \mathrm{k} \Omega$	0.25	1	

upispip ypolg ' \angle ' $81 / d$

No.	Service part	Value	Power W	Tolerance $\%$	Description
R37	$901 / 100 \mathrm{~K}$	$0.1 \mathrm{k} \Omega$	0.25	5	
R38	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R40	$4876605 / 22 \mathrm{~K}$	$22 \mathrm{k} \Omega$	8	5	Wire-wound
R41	$901 / 1 \mathrm{M}$	$1 \mathrm{M} \Omega$	0.25	5	
R42	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R43	$901 / 4 \mathrm{~K} 7$	4700Ω	0.25	5	
R44	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R45	$938 / \mathrm{B} 20 \mathrm{~K}$	$20 \mathrm{k} \Omega$	8	5	
R47	$901 / 100 \mathrm{E}$	100Ω	0.25	5	Wire-wound
R48	$901 / 12 \mathrm{~K}$	$12 \mathrm{k} \Omega$	0.25	5	
R49	$901 / 4 \mathrm{~K} 7$	4800Ω	0.25	5	
R55	$901 / 3 \mathrm{~K} 3$	3300Ω	0.25	5	
R56	$901 / 12 \mathrm{~K}$	$12 \mathrm{k} \Omega$	0.25	1	
R57	$916 / \mathrm{GE} 500 \mathrm{~K}$	$500 \mathrm{k} \Omega$			
R58	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R59	$901 / 1 \mathrm{~K} 5$	1500Ω	0.25	5	
R62	$901 / 1 \mathrm{~K} 5$	1500Ω	0.25	5	
R63	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R64	$901 / 100 \mathrm{~K}$	$0.1 \mathrm{M} \Omega$	0.25	5	
R67	$901 / 82 \mathrm{~K}$	$82 \mathrm{k} \Omega$	0.25	5	
R68	$901 / 82 \mathrm{~K}$	$82 \mathrm{k} \Omega$	0.25	5	
R70	$901 / 100 \mathrm{~K}$	$0.1 \mathrm{M} \Omega$	0.25	5	
R71	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R72	$901 / 6 \mathrm{M} 8$	$6.8 \mathrm{M} \Omega$	0.25	10	
R73	$901 / 27 \mathrm{~K}$	$27 \mathrm{k} \Omega$	0.25	5	
R76	$901 / 6 \mathrm{M} 8$	$6.8 \mathrm{M} \Omega$	0.25	10	
R77	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R79	$901 / 27 \mathrm{~K}$	$27 \mathrm{k} \Omega$	0.5	5	
R70	$\mathrm{E} 098 \mathrm{CG} / 00 \mathrm{~A} 01$	$1 \mathrm{k} \Omega$			
R81	$901 / 8 \mathrm{~K} 2$	8200Ω	0.5	5	
R82	$901 / 15 \mathrm{~K}$	$15 \mathrm{k} \Omega$	0.5	5	
R85	$901 / 6 \mathrm{~K} 8$	6800Ω	0.5	5	

Valves-Röhren-Buizen-Tubes
B1 ECF 80
B2 ECF 80
B3 ECC 85

Fig. 28. Unit A; Y-amplifier

Fig. 29. Diagram of the Y-amplifier
$60+69$ blamko

B501-502-503
$R 522=47 \mathrm{k} \Omega$
RS20 is connected in parallel with R 522
Fig. 31. Diagram of the trigger-pulse shaper and of the time-base generator

Capacitors-Kondensatoren-Condensatoren-Condensateurs

No.	Service part	Value	Voltage V	Tolerance $\%$	Description
C501	$904 / 22 \mathrm{~K}$	22000 pF	500	$-20 /+50$	Ceramic
C502	$904 / 27 \mathrm{E}$	27 pF	500	10	Ceramic
C503	$904 / 27 \mathrm{E}$	27 pF	500	10	Ceramic
C504	$904 / 15 \mathrm{E}$	15 pF	500	10	Ceramic
C505	$906 / 470 \mathrm{~K}$	$0.47 \mu \mathrm{~F}$	400	10	Polyester
C506	$906 / 220 \mathrm{~K}$	$0.22 \mu \mathrm{~F}$	400	10	Polyester
C507	$906 / 100 \mathrm{~K}$	$0.1 \mu \mathrm{~F}$	400	10	Polyester
C508	$906 / 47 \mathrm{~K}$	47000 pF	400	10	Polyester
C509	$906 / 22 \mathrm{~K}$	22000 pF	400	10	Polyester
C510	$906 / 10 \mathrm{~K}$	10000 pF	400	10	Polyester
C511	$906 / 4 \mathrm{~K} 7$	7400 pF	400	10	Polyester
C512	$906 / 2 \mathrm{~K} 2$	2200 pF	400	10	Polyester
C513	$904 / 820 \mathrm{E}$	820 pF	500	$-20 /+50$	Ceramic
C514	$904 / 390 \mathrm{E}$	390 pF	500	10	Ceramic
C515	$904 / 180 \mathrm{E}$	180 pF	500	10	Ceramic
C516	$904 / 68 \mathrm{E}$	68 pF	500	10	Ceramic
C517	$904 / 120 \mathrm{E}$	120 pF	500	10	Ceramic
C518	AC 8128/8	$8 \mu \mathrm{~F}$	350		Electrolytic (PW)
C519	$906 / \mathrm{V} 82 \mathrm{~K}$	82000 pF	700	10	Paper

Resistors-Widerstände-Weerstanden-Résistances

No.	Service part	Value	Power W	Tolerance $\%$	Description
R3	$916 / \mathrm{GE} 20 \mathrm{~K}$	$20 \mathrm{k} \Omega$			Potm. lin.
R501	$901 / 120 \mathrm{~K}$	$120 \mathrm{k} \Omega$	0.25	5	
R502	$901 / 1 \mathrm{M}$	$1 \mathrm{M} \Omega$	0.25	5	
R503	$901 / 220 \mathrm{~K}$	$220 \mathrm{k} \Omega$	0.25	5	
R504	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R505	$901 / 1 \mathrm{~K}$	$1 \mathrm{k} \Omega$	0.25	5	
R506	$901 / 82 \mathrm{~K}$	$82 \mathrm{k} \Omega$	0.25	5	
R507	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R508	$901 / 22 \mathrm{~K}$	$22 \mathrm{k} \Omega$	0.25	5	

$N o$.	Service part	Value	Power W	Tolerance \%	Description
R509	901/4K7	4700Ω	0.5	5	
R510	901/150K	$150 \mathrm{k} \Omega$	0.25	5	
R511	E $003 \mathrm{AG} / \mathrm{D} 47 \mathrm{~K}$	$47 \mathrm{k} \Omega$	1	1	
R512	901/68K	$68 \mathrm{k} \Omega$	0.25	5	
R513	E098 CG/00A08	$100 \mathrm{k} \Omega$			Potm. lin
R514	901/120K	$120 \mathrm{k} \Omega$	0.5	5	Potm.
R516	901/100E	100Ω	0.25	5	
R517	901/1K5	1500Ω	0.25	5	
R518	901/3K3	3300Ω	0.5	5	
R519	901/100E	100Ω	0.25	5	
R520	901/100K-4M7	0.1-4.7	2		par. with R 522
R521	48766 05/18K	$18 \mathrm{k} \Omega$	8	5	Wire-wound
R522	902/K47K	$47 \mathrm{k} \Omega$	0.25	5	
R523	901/82K	$82 \mathrm{k} \Omega$	0.25	5	
R524	901/82K	$82 \mathrm{k} \Omega$	0.25	5	
R525	E 003 AG/D68K	$68 \mathrm{k} \Omega$	1	5	
R527	E 003 AG/D33K	$33 \mathrm{k} \Omega$	1	5	
R528	48766 05/22K	$22 \mathrm{k} \Omega$	8	5	Wire-wound
R529	$901 / 100 \mathrm{E}$	100Ω	0.25	5	Wire-wound
R530	901/100E	100Ω	0.25	5	
R531	901/10M	$10 \mathrm{M} \Omega$	0.5	10	
R532	E003 AG/D47K	$47 \mathrm{k} \Omega$	1	1	
R533	901/		0.25	5	Choice resistor

Valves-Röhren-Buizen-Tubes-Diodes

B501 ECF 80
B502 ECF 80
B503 ECF 80
GR503 0A202

Capacitors-Kondensatoren-Condensatoren-Condensateurs

No.	Servicepart	Value	Voliage V	Tolerance $\%$	Description
C726	$906 / \mathrm{V} 100 \mathrm{~K}$	$0.1 \mu \mathrm{~F}$	700	10	Paper
C727	C 004 FA/20E	20 pF			Trimmer
C728	$908 / \mathrm{P} 10 \mathrm{E}$	10 pF			Trimmer
C729	C 004 FA/20E	20 pF			Trimmer
C730	$904 / 22 \mathrm{E}$	22 pF	500	10	Ceramic
C731	$904 / 1 \mathrm{~K}$	1000 pF	500	$-20 /+50$	Ceramic
C732	$904 / 10 \mathrm{E}$	10 pF	500	$\pm 0.5 \mathrm{pF}$	Ceramic
C733	$904 / 56 \mathrm{E}$	56 pF	500	10	Ceramic
C734	$906 / 22 \mathrm{~K}$	22000 pF	400	10	Polyester
C735	$904 / 2 \mathrm{~K} 2$	2200 pF	500	$-20 /+50$	Ceramic
C736	$904 / 150 \mathrm{E}$	150 pF	500	10	Ceramic
C737	$904 / 150 \mathrm{E}$	150 pF	500	10	Ceramic
C738	$904 / 560 \mathrm{E}$	560 pF	500	10	Ceramic
C739	$906 / \mathrm{L} 100 \mathrm{~K}$	$0.1 \mu \mathrm{~F}$	125	10	Polyester

Resistors-Widerstände-Weerstanden-Résistances

No.	Servicepart	Value	Power W	Tolerance $\%$	Description
R5	E 091 CG/00B12	$500 \mathrm{k} \Omega$			Potm.tandem lin.
R7	916/GL 200K	$200 \mathrm{k} \Omega$			Potm. log.
R725	$901 / 1 \mathrm{M}$	$1 \mathrm{M} \Omega$	0.25	1	
R726	B8 305 26D/176K	$176 \mathrm{k} \Omega$	0.25	1	
R727	B8 305 23D/52K6	52600Ω	0.25	1	
R728	B8 305 23D/20K4	10200Ω	0.1	1	(2 in par.)
R729	B8 305 25D/3K53	3530Ω	0.1	1	
R730	$901 / 1 \mathrm{~K}$	$1 \mathrm{k} \Omega$	0.1	1	
R731	B8 305 23D/500E	500Ω	0.1	1	
R732	$901 / 27 \mathrm{~K}-150 \mathrm{~K}$	$27-150 \mathrm{k} \Omega$			par. with R733
R733	$902 / \mathrm{K} 2 \mathrm{~K} 7$	$2.7 \mathrm{k} \Omega$	0.25	5	Choice resistor
R734	B8 305 26D/350K	$350 \mathrm{k} \Omega$	0.25	1	
R735	B8 305 17D/450K	$450 \mathrm{k} \Omega$	0.25	1	
R736	B8 305 26D/485K	$485 \mathrm{k} \Omega$	0.25	1	

$N o$.	Service part	Value	Power W	Tolerance $\%$	Description
R737	901/100K	$100 \mathrm{k} \Omega$	0.25	5	
R738	901/100E	100Ω	0.25	5	
R739	901/270K	$270 \mathrm{k} \Omega$	0.25	5	
R740	48766 05/22K	$22 \mathrm{k} \Omega$	8	5	Wire-wound
R741	$901 / 1 \mathrm{M}$	$1 \mathrm{M} \Omega$	0.25	5	
R742	901/100E	100Ω	0.25	5	
R743	901/4K7	$4.7 \mathrm{k} \Omega$	0.25	5	
R744	901/100E	100Ω	0.25	5	
R745	938/B20K	$20 \mathrm{k} \Omega$	8	5	Wire-wound
R746	E $097 \mathrm{AD} / 10 \mathrm{~K}$	$10 \mathrm{k} \Omega$			Potm. (PW)
R747	901/100E	100Ω	0.25	5	
R748	901/12K	$12 \mathrm{k} \Omega$	0.25	5	
R749	901/4K7	$4.7 \mathrm{k} \Omega$	0.25	5	
R755	901/3K3	$3.3 \mathrm{k} \Omega$	0.25	5	
R756	901/12K	$12 \mathrm{k} \Omega$	0.25	5	
R757	916/GE 500K	$500 \mathrm{k} \Omega$			Potm. lin.
R758	901/100E	100Ω	0.25	5	
R759	901/1K5	$1.5 \mathrm{k} \Omega$	0.25	5	
R762	901/1K5	$1.5 \mathrm{k} \Omega$	0.25	5	
R763	901/100E	100Ω	0.25	5	
R764	901/100K	$100 \mathrm{k} \Omega$	0.25	5	
R767	901/82K	$82 \mathrm{k} \Omega$	0.25	5	
R768	901/82K	$82 \mathrm{k} \Omega$	0.25	5	
R770	901/100K	$100 \mathrm{k} \Omega$	0.25	5	
R771	901/100E	100Ω	0.25	5	
R772	901/2M2	2.2 M Ω	0.25	10	
R773	901/27K	$27 \mathrm{k} \Omega$	0.5	5	
R776	901/2M2	$2.2 \mathrm{M} \Omega$	0.25	10	
R777	901/100E	100Ω	0.25	5	
R779	901/27K	$27 \mathrm{k} \Omega$	0.4	5	
R780	E 098 CG/00A01	$1 \mathrm{k} \Omega$			Potm. lin.
R781	E 003 AG/D15K	$15 \mathrm{k} \Omega$	1	5	
R782	E 003 AG/D15K	$15 \mathrm{k} \Omega$	1	5	
Valves-Röhren-Buizen-Tubes					
B701	ECF 80				
B702	ECF 80				
B703	ECC 85				

Fig. 32. Unit C; X-amplifier

R732 is connected in parallel with R733
Fig. 33. Diagram of the X-amplifier

Capacitor-Kondensator-Condensator-Condensateur

		Value	Voltage V	Tolerance $\%$	Description
No.	Service part		10000 pF	400	10

Resistors-Widerstānde-Weerstanden-Résistances

No.	Service part	Value	Power W	Tolerance $\%$	Description
R2	$916 / \mathrm{GE} 500 \mathrm{~K}$	$500 \mathrm{k} \Omega$			Potm. lin.
R301	$901 / 10 \mathrm{M}$	$10 \mathrm{M} \Omega$	0.25	10	
R302	$901 / 470 \mathrm{~K}$	$470 \mathrm{k} \Omega$	0.25	5	
R303	$901 / 56 \mathrm{~K}$	$56 \mathrm{k} \Omega$	0.25	5	
R304	$901 /$				Choice resistor
R305	E 098 CG/00A15	$1 \mathrm{M} \Omega$	0.25	5	Potm. lin.
R307	$901 / 220 \mathrm{~K}$	$220 \mathrm{k} \Omega$	0.25	5	
R308	$901 / 470 \mathrm{~K}$	$470 \mathrm{k} \Omega$	0.25	5	
R309	$916 / \mathrm{GE} 500 \mathrm{~K}$	$500 \mathrm{k} \Omega$			Potm. lin.

Valve-Röhre-Buis--Tube-Diode

B301 DH7-78
GR301 0A 202

Fig. 34. Unit B; beam control
$-86-$

Fig. 35. Diagram of the cathode-ray tube circuit

$$
108+84 \text { blink. }
$$

Capacitors-Kondensatoren-Condensatoren-Condensateurs

No.	Service part	Value	Voltage V	Tolerance $\%$	Description
Cl001	$\mathrm{AC} 8311 / 12,5+12,5$	$12.5 \mu \mathrm{~F}$	500		Electrolytic (PW)
C 1002	$\mathrm{AC} 8211 / 16$	$16 \mu \mathrm{~F}$	500		Electrolytic
C 1003	$906 / 47 \mathrm{~K}$	47000 pF	400	10	Polyester
C 1004	$\mathrm{AC} 8311 / 12,5+12,5$	$12,5 \mu \mathrm{~F}$	500		See Cl001
C 1005	$906 / 47 \mathrm{~K}$	47000 pF	400	10	Polyester
C 1006	$903 / \mathrm{N} 200 \mathrm{~K}$	$0.2 \mu \mathrm{~F}$	2000		Box capacitor
C 1007	$\mathrm{AC} 8210 / 16$	$16 \mu \mathrm{~F}$	450		Electrolytic (PW)
C1008	$\mathrm{AC} 8210 / 16$	$16 \mu \mathrm{~F}$	450		

Resistors-Widerstände-Weerstanden-Résistances

No.	Service part	Value	Power W	Tolerance $\%$	Description
R1	$916 / \mathrm{DE} 1 \mathrm{M}$	$1 \mathrm{M} \Omega$			Potm. lin. with switch
R1003	$931 / \mathrm{A} 4 \mathrm{~K} 7$				Wire-wound
R1004	$902 / \mathrm{K} 27 \mathrm{E}$	$4.7 \mathrm{k} \Omega$	16	10	
R1005	$901 / 1 \mathrm{M}$	27Ω	0.25	5	
R1006	$901 / 100 \mathrm{E}$	$1 \mathrm{M} \Omega$	0.25	5	
R1007	$901 / 100 \mathrm{E}$	100Ω	0.25	5	
R1008	$901 / 120 \mathrm{~K}$	100Ω	0.25	5	
R1009	$901 / 1 \mathrm{M} 2$	$120 \mathrm{k} \Omega$	0.5	5	
R1010	$901 / 4 \mathrm{M} 7$	$1.2 \mathrm{M} \Omega$	0.25	10	
R1011	$901 / 6 \mathrm{~K} 8-15 \mathrm{~K}$	$4.7 \mathrm{M} \Omega$	0.25	10	
R1012	$901 / 390 \mathrm{~K}$	$6.8 \mathrm{k} \Omega-15 \mathrm{k} \Omega$	0.25	5	Choice resistor
R1013	$901 / 22 \mathrm{~K}$	$390 \mathrm{k} \Omega$	0.25	5	
R1018	$938 / \mathrm{A} 6 \mathrm{~K} 8$	$22 \mathrm{k} \Omega$	0.25	5	
R1019	$901 / 560 \mathrm{~K}$	$6.8 \mathrm{k} \Omega$	5.5	5	Wire-wound
R1020	$901 / 680 \mathrm{~K}$	$560 \mathrm{k} \Omega$	0.25	5	
R1021	$901 / 680 \mathrm{~K}$	$680 \mathrm{k} \Omega$	0.25	5	

Other components - Übrige Teile - Overige onderdelen - D'autres pieces

B1001	ECL 82	
B1002	85 A2	
B1003	5642	
GR1001	OA 214	
GR1002	OA 214	
GR1003	OA 214	
GR1004	OA 214	
GR1005	B 250 C 75	
VL1	974/T125	Thermal fuse $125^{\circ} \mathrm{C}$
T1001	M7 61528	Mains transformer

PEM 305
E 114

Fig. 36. Unit E; high tension unit

Fig. 37. Unit F; supply

SKLI

PEM 301
E 130

R1021 $=680 \mathrm{k} \Omega \mathrm{VLI}$ is situated on the other side of point

Fig. 38. Diagram of the supply pa

